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1. INTRODUCTION

Let S be such that it equals either R(=(--,-)) or R+(=[o,-)), a be

a a-finite measure on S such that a({OC) > 0 and H: S o R+ be a Borel

measurable function that is locally integrable (w.r.t. Lebesgue measure),

satisfying the integral equation

H(x) = f H(x+y)a(dy) for a.a.[L]x e S, (1.1)

where a.a.[L) refers to 'almost all w.r.t. Lebesgue measure'. The

integral equation (1.1) when S = R or S = R+ has been extensively studied

by many authors. In particular Deny (1961) has identified the general

solution to the equation when S = R and Lau and Rao (1982) when S = R+.

[Indeed, Deny (1961) arrives at the solution to the equation with S = R

assuming H to be continuous; however, as a straight forward corollary

of Deny's theorem, the general solution when H is not necessarily contin-

uous follows as pointed out by Rao and Shanbhag (1986).] A special case

of Deny's result when a is a probability measure and H is bounded was

established earlier by Choquet and Deny (1960), while the Lau-Rao result

subsumes various partial results given earlier by Marsaglia and Tubilla

(1975), Shanbhag (1977), Shi;mjzu (1978), Ramachandran (1979) and several

others.

There also exist by now a number of alternative approaches for

arriving at the solution to (1.1) either in the case of S = R or S = R+.

[See, for example, Ramachandran (1982), Davies and Shanbhag (1984),

Prakasa Rao and Ramachandran (1984), Lau and Rao (1984), Rao and Shanbhag

(1986), and Alzaid, Rao and Shanbhag (1985)]. Both Deny's theorem and

its variant given by Lau and Rao have applications in characterization

problems of probability distributions and branches of applied probability

such as reliability and renewal theories. For the details concerning
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applications, the reader is referred to Feller (1966, Vol. 2, p.351),

Shimizu (1978), Shanbhag (1977), Lau and Rao (1982), M.B. Rao and

Shanbhag (1982), Rao (1983), Alzaid (1983) and Rao and Shanbhag (1986)

and relevant references therein.

Consider now the integral equation

H(x) f H(x+y)o(dy) for a.a.[Llx s R+ (1.2)
JR

where a is a a-finite measure on R such that o({O c) > 0 and H is a non-

negative locally integrable Borel measurable function on R. (It can be

shown by choosing H and a properly that the Lau-Rao (1982) equation is

a special case of (1.2).] We show that H satisfying (1.2) has the

representation

H(x) H(x+y)p6(y) + C(x)e nx for a.a.IL]x e R+ (1.3)

for some real n, a certain measure p concentrated on (--,o) and a peri-

odic function E havinq every nonzero support point of a to be its

period. Further the measure p arrived at in (1.3) is such that if

a((--,o)) > 0, then either both p and a are non-arithmetic or they are

arithmetic with the same span.

In view of this result, it is shown in Corollary 1 of Section 2,

that Deny's (1961) result or its generalized versions given by Lau and

Rao (1984) and Prakasa Rao and Ramachandran (1984) follow from the Lau-

Rao (1982) theorem. Since the proof of (1.3) given in this paper is

rather simple, the observation just made concerning the alternative

proof of Deny's (1961) result is of importance, especially in the light

of the elementary proof based on exchangeability of the Lau-Rao theorem

given recently by Alzaid, Rao and Shanbhag (1985b); the possibility of
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such an approach to Deny's theorem was pointed out by Alzaid, Rao and

Shanbhag (1985). [The reader may find it instructive to compare the

present proof based on the Lau-Rao theorem of Deny's theorem with the

proof of the Lau-Rao theorem based on Deny's theorem as given by Rao

and Shanbhag (1986).]

2. THE MAIN THEOREM

Let us consider the equation (1.2), and define, relative to 0,

the measures aIn and a2n on R such that for every Borel set B of R and

every integer n > 1

C In(B) = on({(X ,...,x n ) s Rn: sm e R+, m=l,...,n-i, sn e B})

and a2n (B)= n((Xl,...,xn ) r. Rn: sm 6 (--,o), m=l,...,n-l, sn f. B})

= On({(X 1...,Xn) 6 Rn: sm > Sn, m=l,...,n-l, sn e B)),

n
where sm 

= x1 + ... + xm , m > I and a
n is the product measure R ai

i=l

with ai = a in the notation of Burrill (1972). Following the analogy

with concepts in random walk in probability theory, we may refer to the

measures p and T defined below respectively as the descending ladder

height measure and the (weak) ascending ladder height measure relative

to C:

P( n=I In((.m, ° ) ' ) (2.1)

and

T(.)= c 2n(R+ n ) .  (2.2)
n=l

It is easy to check that if o((--,o)) > o, then the closed subgroup

of R generated by supp~p] is the same as that generated by supp[a]. Also,

if a(R+) > 0, then the closed subgroup of R generated by supp[T] is the

same as the one generated by suppta]. These observations in turn, imply

N N
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that if a((--,O)) > 0, then either both p and o are non-arithmetic or

both are arithmetric with the same span, and if o(R+) > 0, then either

both T and a are non-arithmetric or both are arithmetric with the same

span. The main result of the paper is the following theorem.

THEOREM. Let the function H satisfying (1.2) be not a function

that is equal to 0 a.e.[L] on (a,-), where a = inf(supp[a]). Then p

and T as defined in (2.1) and (2.2) are Lebesgue-Stieltjes measures.

[This is equivalent to the statement that they are both Radon measures

and also to the statement that they are both regular measures.] More-

over,

H(x) = f H(x+y)p(dy) + E(x)e nlx for a.a.[Llx e R+ (2.3)

where & is a non-negative periodic function with &(.) = E(.+s) for

every s e supp[a], and n is a real number such that

fR e (dx = . (2.4)

[If n satisfying (2.4) does not exist, then we take E in (2.3) to be

identically zero with n as an arbitrary real number.]
N

Proof. The case a((0,)) = 0 is trivial, since (1.2) implies, in

view of the assumptions, that a is a Lebesgue-Stielties measure in this

case. We shall therefore assume that a((0,)) > 0. The problem remains

invariant if H and a(dy) are replaced respectively by H(x)e " x and

e6Ya(dy) for any 6 e R. In that case, there is no loss of generality

in assuming that a((0,-)) > 1 and hence in assuming that

p.
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0 < H (x) = JH(Y)dy < - for all x e R

following essentially the arguments of Alzaid et al (1985). Since

(1.2) is satisfied by H , the theorem follows if we prove it by re-

placing H by H We can then assume without loss of generality that

H itself is a positive decreasing continuous function. Now (1.2) gives

us inductively

H(x) = r H(x+y)( o )(dy) + J H(x+y)Ik (dy)
( n=l 1 R+

k = 1,2,... , e e R+. (2.5)

This, in turn, implies that for each x e R+, the sequence of the latter

integrals on the rhs of (2.5) is a decreasing (nonnegative real) sequence

and hence has a limit. Consequently, we can write

H(x) = H(x+y)p(dy) + (x), R (2.6)

where

H(x) = lim H(x+y)a1I(dy). (2.7)
k-J R+

Since H is assumed to be positive continuous and the integral appearing

on the r.h.s. of (2.7) has to be finite, it follows immediately that p

is a Lebesgue-Stieltjes measure. Indeed (2.6) implies, in view of the

decreasing nature of H, that p(R) < 1. The fact that T is a Lebesgue-

Stieltjes measure is obvious in the case of o((--,o)) 0, in view of

the assumption on H, since

a and f H(y)a(dy) < .
R+
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Furthermore, if o((--,o)) > 0, then given any so0 e (--,o) nsupp[a] and

y e R+, we have

ns 3s s

(n+l)s 3s0
)T((-,y + 2t))+ n=0,l,2,..., (2.8)

which implies that

nso  (n+l)s o

y + -- )) < - if T((-,y + - 2 ) <

2-2

Since T((--,O)) = 0, we have then by reverse induction that T((--,y)) <

for each y. This implies that T is a Lebesgue-Stieltjes measure. (For

obtaining (2.8), the identity given in brackets immediately after the

definition of a2n may be used.) This establishes the first part of the

theorem.

Define now, for any Borel set A(C R), a to be the measure

with s, e R in its definition replaced by Sl e R+nA. Clearly then for

every x e R+ and Borel set A the sequence

{J H(x+y) (A ) (dy): n=l,2,...}
R+

is a decreasing sequence of non-negative real numbers and hence has a

limit. Consequently, we have for each c e R+

r H 10,OC](d H (c~1 ' (),
H(x) = lim \H(x+yio y + lim f (I ) x +

n- + I+ (2.9)

Since for every x,c e R+ and n=l,2,...

f H(x+Y)alc"-)(dY) < H(x+y)o(dy)

R+ In J(co)

d - .'x.6 pz
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it follows that the latter limit on the r.h.s. of (2.9) tends to zero

as c ®. We can therefore write

H(x) = Jim Jim J H(x+y)A{°C](dy), x e R+. (2.10)c- n- R+ l" n

Observe that the interpretation of a2n given under brackets immedi-

ately after its definition yields for each c e R+ and n=l,2,...

I n

un+)rolld)= ~~~~ (dza (dy),

R+ mln = 1l 'io,c] fR+ ln-m 2m

x e R+ (2.11)

where a0 is the probability concentrated on {o}, because

n
Rn mj  {(xl""Xn): s r > Sm' r=l,2,...,m-l; sr _> sn r=m,...,n}.

m=ln r r m

Since T is a Lebesgue-Stieltjes measure and

0< f H(x+y+z)In (dz) < H(x), x,y e R+, n=l,2,...,
R+

we get from (2.10) and (2.11), using the Lebesgue dominated convergence

theorem in particular, that

H(x) = lim J H(x+Y)T(dy)

C-*43 I [o c]

= J x e R+. (2.12)

Then (2.7) and (2.12) imply the second part of the theorem, in view of

the Lau-Rao (1982) theorem, for which an elementary proof exists as shown

by Alzaid et al (1985).



9

Remark 1. The above theorem remains valid with trivial changes in

its proof even when the local integrability of H on R is replaced by

that on (a, -), where a is as defined in the statement of the Theorem.

Remark 2. The proof of the above theorem simplifies considerably

if (1.2) is replaced by (1.1) with S = R. In that case, essentially by

symmetry, the fact that p is a Lebesgue-Stieltjes measure implies that

T is a Lebesgue-Stieltjes measure. Also, the validity of the identity

in (2.6) for all x e R implies that

I"; , H(x+y)p(dy) < for all x e R

and hence, by symmetry again, that

R H(x+y)T(dy) < - for all x e R.

In view of these observations, it follows that, in the present case,

the Theorem follows even when the portion of the proof following the

observation that p is a Lebesgue-Stieltjes measure until the identity

(2.10) is deleted, provided [o,c] and'alo'c] in (2.11) are replaced byIn
R+ and aln and portions not relevant are deleted.

COROLLARY 1. [Deny (1961) and Lau and Rao (1984)]: If H satisfy-

ing (1.1) with S = R is not a function that is equal to zero for a.e.[L],

then it has the representation

H(x) = l(x)exp(nlx) + 2(x)exp('2x) for a.a.[L]x 6 R

where &l and 2 are periodic functions with (.) = (+s), i=l,2, for
1 2

each point s e supp [o] and ni such that

J exp(nix)a(dx) 1 , i=l,2.

N!,- , v ,, , .. ., ', ' ." '. ,,' ' ,; ' . > ," X ' , ' , • '. , ' . . , ,, --- , . " - . ' "1 .-. " .- .- '3 . .
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[For the uniqueness of the representation, one may assume for example

that &2 = 0 if nl = n2; Rao and Shanbhag (1986) have implicitly assumed

this to be so in their proof of the Lau-Rao (1984) result based on Deny's

theorem.]

Proof. As in the proof of the main Theorem, it is clear that there

is no loss of generality in assuming H to be continuous and decreasing.

In such a case, we get

H(x) H(x+y)p(dy) + &(x)exp(nx) for all x e R (2.13)

with as a non-negative continuous periodic function on R with every non-

zero point of supple] as its period and n as a real number. Clearly ri in

(2.13) satisfies

f_~exp(nx)dx 
I

if & 1 0. Define now c* to be equal to zero if E = 0 and to be the supremum

of the set C defined as the set of all non-negative c's for which Hc(X) =

H(x) - c&(x)exp(nx) > n for all x e R and

H ( = J Hc (x+y)p(dy) + d E(x)exp(nx), x e R

with d > 0. Clearly C is compact by the dominated convergence theorem

(on noting in particular that 0 < c, d < H(x0 )/&(x o ) < - when &(x0 ) 0)

and hence e 6 C; also

Hc(X) = Hc,(X+y)p(dy), x e R. (2.14)

In view of the Lau-Rao (1982) theorem (which is now an obvious corollary

of the main Theorem) and the definition of Hc., the asserted representa-



tion for H follows.

Remark 3. If a is any Lebesgue-Stieltjes measure on R (not

necessarily associated with an integral equation), then, using the

arguments employed in the theorem to establish T to be a Lebesgue-

Stieltjes measure, we have that both p and r as defined in (2.1) and

(2.2) respectively are Lebesgue-Stielties measures when at least one

of them is given to be so. In that case it is easily seen that

(B) + t*p(B) = p(B) if B is a Borel set of (--,o)

T(B) if B is a Borel set of R+

which implies that

0 + T*p = p + T. (2.15)

The equation (2.15) implies that for every relatively compact

Borel subset B of R

a(B) = p(B) + T(B) - T*p(B) (2.i6)

which may be viewed as Wiener-Hopf factorization of a. In the proof of

the Theorem, after observing that p and T are Lebesgue-Stieltjes measures,

one could have obviously appealed to either (2.15) or (2.16) to arrive

at the result, given the condition

' H(X+y)T(dy) < - for all x s

since this yields

' % •,,,"-
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A(x) " H(x) - f H(x+)p(dy)

= H(x+y)o(dy) - fRH(x y)p(dy)

- RH(x+y -
+Y + z ) p ( d z ) ] ( dy )

-f H(x+y)T(dy), x 6R+.

In the case of (1.1) with S = R, we can take

fR H(x+y)T(dy) 
<

as observed in Remark 2, and hence the prsent approach remains valid.

This provides us with a further proof of the result of Corollary 1.

Remark 4. In view of Remark 3, we may raise the question as to

whether there exists, under the hypothesis of the Theorem, a situation

in which for some Borel B aR+ with positive Lebesgue measure

R H(x+y)T(dy) = - for all x e B

so that the argument based on the Wiener-Hopf factorization as it

stands does not remain valid. The answer to this question is in the

affirmative as is shown in the following example.

EXAMPLE 1. Let a be the probability measure concentrated on

(-1,O,l,2,... such that its moment generating function is given by

M(t) = 1 + aet (l-et) , t O 0,

where o and 8 are fixed positive numbers such that 1 < 8 < 2 and 0 < aB < 1.

0 [This moment generating function but for a location change was considered
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earlier by Seneta (1968) in connection with a certain problem in

branching processes.] Let H be such that

[ [x+l] if x > 0

0 otherwise,

where [x+l] is the integer part of x + 1. Hence it follows that H

satisfies the hypothesis of the theorem and

H(x) H(x+y)(dy), x e R+.

In this case p is the probability measure concentrated on {-I} and, in

view of the Wiener-Hopf factorization of a, T is the probability

measure with the moment generating function

M * t) = I (-e (0-l, t < 0.

The expression for M (t) implies that T in question has an infinite

mean and hence we have here

R+H(x+y)T(dy) = - for each x e R+.

Thus we have a simple counter-example supporting the claim made.

From this example we can obviously produce examples with H satisfying

an additional condition of being positive continuous and decreasing.

[It is also worth pointing out here that this example illustrates the valid-

ity of the statement of Feller (1966) concerning ladder height means in

a random walk that is induced by variables with zero mean on page 380

immediately above his Theorem 2: in the present case, we have the mean

of a to be zero, the mean of the descending ladder height to be finite,

and the mean of the ascending ladder height to be infinite.]
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Remark 5. In (2.3), we can choose & to be a constant if a is

non-arithmetic and as a periodic function with period X if a is arith-

metic with span X.

Remark 6. For the a appearing in the Theorem, the Wiener-Hopf

factorization given by (2.15) implies that for every real e and x,y such

that 0 < x < y< -

J x p J~dz 01 exp(oz)p(dz) < J1~exp(ez)T(4z)~x'y] J[-x.o] ' [o,y]

yielding that

* A I

T (e) = R exp(ez)T(dz) <
R+

whenever

p (e) = exp(ez)p(dz) > 1.

(--,o)

By symmetry, we have also p (e) < - whenever T (e) > 1. The Wiener-Hopf

factorization of 0 also gives

a (e) + T*(6)p*(e) = T*(e) + p (e), a e R (2.17)

where

a (e) = fRexp(ex)a(dx).

Then (2.17) implies the following. If we assume that r (e) > 1 and

p ( 1) > I (and hence that I < T W < - and I < (e) < -), then we get

that 1 - a (0)(=(l-T (6))(l-0(e))) > 0 and hence o (e) < 1. However,

the definitions of p and T imply that p (e) and T (e) denote respectively

p((--,o)) and T(R+) corresponding to the case with eeXa(dx) in place of

a(dx). If a*(e) < 1, we have obviously the measure relative to eeXa(dx)
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(i.e., the measure for which each Borel set B receives the value

eeXa(dx)) to be bounded by I and hence the ladder height measureB

interpretations of T and P yields that P (e) < 1 and T(e) < 1. Con-

sequently it follows that for each o at least one of T (e) and P (e)

should be less than or equal to 1. (Otherwise, we arrive at a contra-

diction.) This, in turn, implies on using in particular the dominated

or monotone convergence theorem according as the case that for a 60

such that T (e0 ) (under a((o,-)) > 0) or p (e) equals 1, we have either

S(e 0) = 1 and p (o) < 1 or p (eO) = 1 and T (e 0 < 1 and hence

a (6 ) = 1; from this we conclude that (2.4) in the case of a((o,-)) > 0

implies a() = 1.

Remark 7. From what is given in Remark 6, we conclude that the

measure a in the Theorem satisfies either a((-w,O)) < I or o(R+)< 1.

COROLLARY 2. Let H be as in the Theorem and for each x e R+ and

p(x) denote the p measure on R with an alteration that the sr s involved

(x)
in its definition are replaced by sr + x. Then, for each x e R+, p

is a Lebesgue-Stieltjes measure and, given that

H~)and H(x+y)p(dy)H(x)an

are right continuous on R+ and also that H(x) is locally bounded on R+,

we have for each x s R+

H(x) = H(y)p(X)(dy) + &(x) [_x'o)en(X+Y)(n P*R)(dY)

(2.18)

for some non-negative real periodic function E such that it is a con-

stant if a is non-arithmetic and a function with period x if a is arith-

Ma
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metic with span X, and n is as defined in the Theorem. (If n satisfy-

ing (2.4) does not exist, we take n to be any arbitrary real number
*0

with & B 0; also, we define 0 to be the probability measure that is

degenerate at zero.) Moreover, if f is any Borel measurable function

on (--,0) such that Tf(y)Ip(X)(dy) < - for each x e R+ and E is
(-=o)

any Borel measurable function of the form of E defined above, then the

function H given by

H(x) = )f(y)p W)(dy) + E(x) f[o e n(x+Y)( 7 pn) (dy), x eR+
(--,o) [-x ,o) n=o

= f(x), x e (--,o)

satisfies (1.2) (even with 'a.a.[L]' replaced by 'all'.).

Proof. We have that p is a Lebesgue-Stieltjes measure concentrated

on (--,0). Clearly, for each x e R+ and Borel set B

(x) (B+x) = (x)((- ,-x) n B) (2.19)n=l

where (x) n is the convolution of measures
whr 1 x = p and for each n> 2, P(x)

(x,[-x,O).) and p (and hence is a well defined Lebesgue-Stieltjes

measure concentrated on (--,-x)). For any bounded interval [a,Bj, we

have

P (X).([a,] + x) < P 'n([(lBI ) <

n1l

(with p as the n-fold convolution of p with itself) and hence it

follows that p (x) is a Lebesgue-Stieltjes measure. Now, if H(x) and

f H(x+y)p(dy) are right-continuous on R+, then (2.1) is valid with

aa ih-otnoso +
(-=,o).
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'a.a.[L]' replaced by 'all' and t as defined in (2.18). From this

we get for each positive integer k and x s R+.

H [)=I(-,x nk (x" (dy)
H(x) H(x+y)( k Pn )(dy) + H(x+y)p* (k 2(--9-x) n=l ,[-x,o)

+ W (Ip )(dy) (2.20)

[-xo) n=o

on noting that the restrictions of p*n and Pn to [-x,o) are identical

for each n > 1. On taking, under the assumption of local boundedness

of H(x) on R+, the limit as k - - in (2.20), we arrive at the identity

(2.18). It is easy to verify that H of the Theorem satisfies (1.2)

(even with 'a.a.[L]' replaced by 'all') on using the Wiener-Hopf factor-

ization and the observation in Remark 6 that (2.4) implies a (n) = I

(and p (n) < 1).

Remark 7. If we have H(x) to be monotonic on R (or on [a,B) if a

defined in the Theorem is finite), then the above Corollary 2 remains

valid with the assumption of the right-continuity of H(x) and

I ( H(+y)(dy) on R+ replaced by the assumption that H(x) is

right-continuous on R (or on [L,-) if a > --). Moreover, if a > --, the

corollary remains valid with the right continuity of H(x) and

f H(x+y)p(dy) on R+ together with the local boundedness of H(x)

on R+ replaced by the assumption that H(x) is locally bounded and right-

continuous on [a,-). It is also worth noting here that if the local

boundedness of H is deleted from the statement of the corollary, then

the corollary remains valid subject to the alteration that 'for every

x e R+ immediately above (2.18) is replaced by "for a.a.[Llx e R+

. **.I*i
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since by Fatou's lemma and the local integrability of H, we have in

(2.20), as k -

J H(x+y)p *k (dy) - 0 for a.&. [L]x e R+.
[-x,o)

COROLLARY 3. Let a and H be as in the theorem with a > -- and

let p(x) for each x e R+ be as defined in Corollary 2. Assume that

the restriction of H to [a,-) is locally bounded and right-continuous.

Define o = {e: a (e)=l1 with a as defined in Remark 6. Then 0 is non-

empty (without having more than two members), and if a((-=,0)) > 0 and

o is the only member in 0 or is the smaller of the two members in 0,

we have

Pe ,oxe G(dx) < 0.

Moreover, in this case, we have the assertions of Corollary 2 to be

valid with

(i) 0 if e is a singleton and Pe < 0,

0ii) en(x+y)( I p*n)(dy) replaced by xe - ye )(dy)

[-x,o) n=o (-',o)

if e is a singleton and u = 0,

(iii) en(X+Y)( p* pn)(dy) replaced by e e (dy)

f{-x,o) n=o (-rbo)

with e1 e 0 and 81 > e0 if e is a doubleton.

Proof. If u((-=,0)) > 0, we have obviously in view of the fact that

a > -- some real number 6 such that p (6) = 1 and if V((-",0)) = 0, we

have clearly & 1 0 and, hence from the Theorem, n exists such that T*(n) = 1,

where p and T are as defined in Remark 6. From what is mentioned in

-- p! * *U- .
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Remark 6, we have a (6) = 1 if p (6) = 1 and a (n) = 1 if W (n) = 1.

Consequently it follows that e is non-empty. Clearly the assumptions

of the Theorem imply a({O}) < 1 and hence in view of Remark 6 we have

6 < n whenever p*(6) = 1 and T (n) = 1. From the Wiener-Hopf factori-

zation concerning probability mearues it is clear that from any x,

a(A) = 1 if and only if either p (X) = 1 or T (A) 1. It is there-

fcre clear that 0 can at most have two points. (This latter fact also

follows directly from properties of moment generating functions of

probability measures.) From Feller's (1966) Theorem 2 on page 380 and

the remark following Theorem 2 on page 396 it follows that if p (eo ) = I,

then Veoa < 0. If e0 is as defined in the statement of the corollary

and a((-w,O)) > 0, then, from the fact that p (6) = 1 and (n) = 1

imply that 6 < n, we have p (e o ) = 1 and hence Peo 0. We shall now

establish the assertions (i), (ii) and (iii). Clearly, the assertion

(i) is obvious from Corollary 2 since the remark in Feller (1966) follow-

ing Theorem 2 on page 396 implies 0 (o) < 1 if p0  < 0 and hence
. 0

there is no n such that T (n) = 1. On the other hand, if we have the

situation either as in the assertion (ii) or the assertion (iii), we

have an n such that T (n) = 1. In the case of p = 0, Feller's

Theorem 2 on page 380 implies the existence of n =00 and in the case

of 8 containing two points clearly we have n =1> Bo with 0l e G in

view of what we have observed earlier. Let be as in Corollary 2. We

shall consider here this to be a function defined on R. Clearly the

restriction of E to [a,-) is right-continuous, locally integrable and

locally bounded. Define now in the case of assertion (ii)
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exj (x)(x+ca)e 0~ if x > a~

H(x)

0 otherwise

and in the case of assertion (iii)

elx

(x)e if x >a

H(x) =

0 otherwise.

Observe that in both the cases H satisfies (1.2) and we get

r
H(x) = H(x+y)p(dy) + c(x), x e R+

for some positive constant c (which need not be the same in the two

cases). In both the cases, we have H satisfying the conditions re-

quired to arrive at (2.18) of Corollary 2 and hence the equation in

question to be valid with ce replacing E. Since c IE is of the form

of , the assertions (ii) and (iii) easily follow.

COROLLARY 4. Let kvn ,wn): n=O,l,2,... be a sequence of vectors

of non-negative real components such that at least one v n t 0 and w 0

and A > 0. Further, let k and r be positive integers such that the

largest common divisor of k and those n for which wn > 0 be T. Then

the sequence {(v n n)} as defined satisfies the recurrence equations

vn+ k : m n=O,l.... (2.21)
M=o

and for some integer kI that is an integer multiple of T such that

kI  > k,

V = v n=O,I,...,k (2.22)
n+k n+k
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only if

-n n/(k -k)
=q X  n=O,l.. n n '

for some non-negative perioaic sequence qn with period T

Proof. it is sutficient if the result is established for T = 1.

Defining H and a such that

V [x]+ k , x > k

H(x) x
0 otherwise,

ana

a(fn)j = Wn+k , n > -k, O({-k,-k+i,...}c) = 0,

where [x] denotes the integer part of x, we see that the conditions for

the validity of (2.3) with 'a.a.[L]' replaced by 'all' are met. The

equation in question implies, in view of (2.22) and the fact that

a({-k}) > 0, that H(x+kl-k) = xH(x) for all x > -k. Since we can find

an integer r such that r(k1-k) > k, we have subsequently

H Ix H(x+r~kl- k )+y),-r. (dy), x F_ R+ (.3H(x) =J xe(2.23)

with r(kl-k) - k > 0. There is no loss of generality in assuming that

a({0)) > 0 and hence that the measure a defined such that

(B) = -ra(B-r(k0 -k)) for every Borel set B

is arithmetic with unit span. Consequently, the Lau-Rao Theorem (which

is now a corollary of our theorem) implies, in view of (2.23) and the

periodicity of H(x)x-x/(kl -k) x ) -k, the required result.

"MtIA ,! A •
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Remark 8. It is also possible to prove the result of the corollary

by using the Perron-Frobenius Theorem given in Seneta (1973, pp.1-2).

For the details, the reader is referred to Alzaid (1983).

Remark 9. If H is as in the Theorem such that it is locally bound-

ed and right-continuous and a defined in the Theorem is finite and

a({a}) > 0, then, for some B > Jul with 6 as an integer multiple of the

spa- of a in case a is arithmetic, and X > 0,

XH(x+IcI) = H(x+a) for all x e [0,fal]

only if H(x) = E(x)exp(nx), x a [a,-) with t as a periodic function with

every non-zero support point of a to be its period and n such that

.T = 1 and n = -(e-a)log x. This result is a version

of the above Corollary 4 in the case of arithmetic a, and it follows via

a modified version of the proof of the corollary on using the result of

Corollary 2 when H(.) is replaced by H(x +) with x e R in the case
0 0 +

of nonarithmetic a. Whether or not the result of the present remark is

valid without the condition a({a}) > 0 is an interesting question to

which we have not found any answer as yet.

Remark 10. Now, if we have k to be a positive integer and {(vn ,wn):

n=0,l,2,...} to be a sequence of vectors with non-negative real components

such that w > 0, v n 0 for some n, and the largest common divisor of

k and those n for which wn > 0 equals 1, then it follows that the result

of Corollary 3 identifies the solution to the system of equations

vn+k : Wvm+n, n=O,l,2,... (2.24)
m=o

given the sequence {w n=0,l, .2,...) and the values of voV I , ... Vkl.

L "" " ' " " "" " " " " " " ' " '- "' ".0"- " " '"-" " , n"
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Indeed, if we define D = {b: b>O, b k  bnW } and f. i>k,
n=o

0 r=0,l,...,k-l} to be the sequence of absorption measures corresponding

to the non-negative matrix T(in the sense of Seneta (1973)) with state

space {0,1,2,...} and the (i,j)th element as

f 6ij if ij = k-1

Tij w ji+k if i = k,k+l,... and j > i-k

0 otherwise,

where . is the Kronecker d:lta, then the corollary yields that the

system of equations is satisfied if and only if D is nonempty,

fno,' f nk-l are finite for each n > k, and one of the following

condition holds:

(i) D has only one point, ~(nk)b wn < 0 for b e D, and
n=o

vn + fn,oVo + + fn.k-1Vk-l n=k,k+l...

(ii) D has only one point, (n-k)b n = 0 for b e D and for
n=on

some c > 0

vn = fn,o (v0 -c.o.b. 0) + + fn,k-l(vk-l-c(k-l)b k -l) + cnbn,

with b 6 D.

(iii) D contains two points and for some c > 0

vn = f n,o(v0-cb) + ... + f n,kl(vk-l-cbkl) + cbn n=k,k+l,...,

*, with b as the larger of the two members of D.
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A direct and substantially simpler proof of the result here without

involving the Wiener-Hopf factorization can obviously be given (see,

for example, Alzaid (1983)).

3. SOME COMMENTS ON PREVIOUS RESULTS

We shall now discuss in the light of our findings some existing

results and suggest possible extensions.

3.1 ARNOLD (1980):

Let Y l ,n " - Y denote the n ordered observations in a random

sample of size n from a non-degenerate distribution F concentrated on

the set of non-negative integers. Arnold (1980) raised the question as

to whether the independence of the random variable Y2,n -Yl,n and

the event {Y1 ,n= m) for a fixed integer m > 1 implies the distribution

F to be geometric (or shifted geometric). In this case, the property

is equivalent to a recurrence relation of the type (2.24) subject to a

modification that wn 's are given to be certain functions of vn 's. In

view of the modification involved, we can not obviously apply our result in

Remark 10 directly to identify the solution v to the system of equations
n

in the present case. However, the result of Corollary 4 shows that,

under some mild conditions assuring certain points to be atoms of F,

the independence of Y - Y and {Y = m) together with the condition
2,n l,n ,n

P{Y 2,n- Y ln > *j ' I* l = PU2 , ~=Y l > ~lyln = m+m', j=O,l'...,m-l

for some fixed integer m' > 0 characterizes a geometric distribution.

This extends a result of Sreehari (1983) showing that the independence

of Y2,n " Yl,n and{Y l,n = m) and the independence of Y2,n - Yl,n and

{Y = m+m'} for some fixed integer m' > 0 characterizes, under some

mild conditions, a geometric distribution.

• * t p ~ ~ f
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3.2 KRISHNAJI (1974):

In view of the result in Remark 10, it is seen that Theorem 4 of

Krishnaji (1974) is not correct. This also follows from the counter-

example given by Patil and Taillie (1979). The error in Krishnaji's

argument appears in the last sentence of the proof in which it is

claimed that since X = Aexp{A(B-l)} is degenerate, A has to be degene-

rate. We may however point out here that Krishnaji's Theorem with the

portion "G(t) is non-negative for all real t" in it replaced by "G(t) is

infinitely divisible" is valid.

3.3 SHANBHAG AND TAILLIE (1979):

The following result is an extended version of the Shanbhag-

Taillie (1979) result and it is a trivial corollary of our result of

Corollary 4:

"Let {(ax bx): x=0,l,...} be a sequence vectors with non-negative

real components such that a > 0 for all x and b 0> . Let (X,Y) bex 0

a random vector with non-negative integer-valued components such that

for each x with P{X=x} > 0, we have

a b
P{Y=yIX-xl .c,

where {c } is the convolution of a I and {b 1. Assume that

P{X-Y=k 0 > 0 and PX-Y=k o+k I> 0. Then the following conditions arePXYk ) 0 0n { - 1° l

equivalent.

(i) Y and X-Y are indenpendent.

(ii) P{Y=y} = P(Y=ylX-Y=k 0 , y=O, .,...0

P{Y=ylX-Y=k0  = P{Y=ylX-Y=k +k 1  y=0,l,...,k

(iii) For some e > 0 and some periodic sequence -x
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with the largest common divisor of the x for which bx > 0

as one of its periods
" X

P{X=x} = q cx , x=0,l,2,...
a~ x

Shanbhag-Taillie (1979) result may be considered to be a variant

'" of Shanbhag's (1977) extension of the Rao-Rubin (1964) Theorem on damage

models and is itself an extension of Patil-Taillie (1979) result. Patil

and Taillie (1979) have considered a specialized version of Shanbhag-
rX- (1- )x

Taillie model with a = -. x=O,l,... and bx - - ' x=O,l,... when

w 6 (0,l) and fixed, and hence with

P{Y=yjX=x} = (')nY(l-W)-xy, y=O,l,...,x; x > 0. (3.1)
y

These latter authors have also shown that if (3.1) is valid together with

P{Y=y) = P{Y=ylX-Y=k), y=O,l,...; P{x-y=k} > 0 (3.2)

for some fixed k > 0, then it is not necessary that X be Poisson thus

disproving a conjecture of Srivastava and Singh (1975). Our result of

the last remark not only shows that Srivastava-Singh conjecture is false

but also identifies under Shanbhag-Taillie model the class of distri-

butions relative to which the condition (3.2) is valid. In particular,

it follows from our result that under the model in question if (3.2) is
[!] ~ ~~x x frcranB [~)

valid with k = 1, then either gx/cx- l1 + (l-e)x 2 for certain e 0

9 0 or g-/cOe + (1-e)xx for certain 8 [0.1), kiox > 0,

where gx = P{Xx).

3.4 KENDALL (1951, 1953), LINDLEY (1952) AND OTHERS:

The restricted Deny equation (1.2) appears in several places in

.b6
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queueing and storage theories (see, for example, Kendall (1951, 1953),

Lindley (1952) and Wishart (1956)). In particular, Lindley (1952)

has shown that the stationary waiting time distribution function cor-

responding to a GI/G/l queueing system satisfies (1.2) with H(x) =0

for x < 0. Indeed our Corollary 2 gives the expression for H in this

case and shows that the distribution in question exists if and only if

the relative traffic intensity of the system is less than 1 and that

when it exists the distribution is compound geometric; it may, however,

be noted here that the results cited are not new and these have appear-

ed in Lindley (1952), Feller (1966) and elsewhere. The result of our

last remark could be applied to obtain certain conclusions of Kendall

(1953) and Wishart (1956) concerning GI/M/s and GI/Ekil1 systems re-

spectively. The result implies that, in either of the two cases, the

stationary queue length distribution exists if and only if the corres-

ponding relative traffic intensity is less than 1. Also it yields

the known results that in a GI/H/l queueing system the stationary

queue length distribution is geometric and in a GI/M/s system the

stationary waiting time distribution is exponential but for a dis-

continuity at zero.

.1N
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